37 research outputs found

    Uniform approximation and explicit estimates for the prolate spheroidal wave functions

    Full text link
    For fixed c,c, Prolate Spheroidal Wave Functions (PSWFs), denoted by ψn,c,\psi_{n, c}, form an orthogonal basis with remarkable properties for the space of band-limited functions with bandwith cc. They have been largely studied and used after the seminal work of D. Slepian and his co-authors. In several applications, uniform estimates of the ψn,c\psi_{n,c} in nn and c,c, are needed. To progress in this direction, we push forward the uniform approximation error bounds and give an explicit approximation of their values at 11 in terms of the Legendre complete elliptic integral of the first kind. Also, we give an explicit formula for the accurate approximation the eigenvalues of the Sturm-Liouville operator associated with the PSWFs

    Spectral Decay of Time and Frequency Limiting Operator

    Full text link
    For fixed c,c, the Prolate Spheroidal Wave Functions (PSWFs) ψn,c\psi_{n, c} form a basis with remarkable properties for the space of band-limited functions with bandwidth cc. They have been largely studied and used after the seminal work of D. Slepian, H. Landau and H. Pollack. Many of the PSWFs applications rely heavily of the behavior and the decay rate of the eigenvalues (λn(c))n0(\lambda_n(c))_{n\geq 0} of the time and frequency limiting operator, which we denote by Qc.\mathcal Q_c. Hence, the issue of the accurate estimation of the spectrum of this operator has attracted a considerable interest, both in numerical and theoretical studies. In this work, we give an explicit integral approximation formula for these eigenvalues. This approximation holds true starting from the plunge region where the spectrum of Qc\mathcal Q_c starts to have a fast decay. As a consequence of our explicit approximation formula, we give a precise description of the super-exponential decay rate of the λn(c).\lambda_n(c). Also, we mention that the described approximation scheme provides us with fairly accurate approximations of the λn(c)\lambda_n(c) with low computational load, even for very large values of the parameters cc and n.n. Finally, we provide the reader with some numerical examples that illustrate the different results of this work.Comment: arXiv admin note: substantial text overlap with arXiv:1012.388

    Analyse harmonique et fonctions d'ondes sphéroïdales

    Get PDF
    Notre travail est motivé par le problème de l'évaluation du déterminant de Fredholm d'un opérateur intégral. Cet opérateur apparait dans l'expression de la probabilité pour qu'un intervalle [?s, s] (s > 0) ne contienne aucune valeur propre d'une matrice aléatoire hermitienne gaussienne. Cet opérateur commute avec un opérateur différentiel de second ordre dont les fonctions propres sont les fonctions d'ondes sphéroïdales de l'ellipsoïde alongé. Plus généralement nous considérons l'opérateur de Legendre perturbé. Nous montrons qu'il existe un opérateur de translation généralisée associé à cet opérateur. En?n, par une méthode d'approximation des solutions de certaines équations différentielles, dite méthode WKB, nous avons obtenu le comportement asymptotique des fonctions d'ondes sphéroïdales de l'ellipsoïde alongé Il s'exprime à l'aide des fonctions de Bessel et d'Airy. Par la même méthode nous avons obtenu le comportement asymptotique des fonctions propres de l'opérateur dfférentiel d'Airy.Our work is motivated by the problem of evaluating the Fredholm determinant of an integral operator. This operator appears in the expression of the probability, for a random matrix in the Gaussien Unitary Ensemble, to have no eigenvalue in an interval [?s, s]. This operator commutes with a differential operator wich have the spheroidal wave functions as eingenfunctions. More generally, we consider the perturbated Legendre differential operator. We show that there exists a generalized translation operator associated to the perturbated Legendre dfferential operator. Finaly, by using the WKB method, we have determined the asymptotic behavior of the prolate spheroidal wave functions. This asymptotic behavior involves Bessel and Airy functions. By using the same method, we have obtained similar results for asymptotic behavior of the eigenfunctions of the Airy differential operator.PARIS-JUSSIEU-Bib.électronique (751059901) / SudocSudocFranceF
    corecore